LSSGB: Lean Six Sigma Green Belt Certification Video Training Course
LSSGB: Lean Six Sigma Green Belt Certification Video Training Course
23h 51m
111 students
4.6 (80)

Do you want to get efficient and dynamic preparation for your Six Sigma exam, don't you? LSSGB: Lean Six Sigma Green Belt certification video training course is a superb tool in your preparation. The Six Sigma LSSGB certification video training course is a complete batch of instructor led self paced training which can study guide. Build your career and learn with Six Sigma LSSGB: Lean Six Sigma Green Belt certification video training course from Exam-Labs!

\$27.49
\$24.99

Student Feedback

4.6
Excellent
56%
44%
0%
0%
0%

LSSGB: Lean Six Sigma Green Belt Certification Video Training Course Outline

Part 1 - Lean Six Sigma Green Belt Introduction Video

09:07
07:52
10:13
10:13
13:55
15:08

LSSGB: Lean Six Sigma Green Belt Certification Video Training Course Info

Gain in-depth knowledge for passing your exam with Exam-Labs LSSGB: Lean Six Sigma Green Belt certification video training course. The most trusted and reliable name for studying and passing with VCE files which include Six Sigma LSSGB practice test questions and answers, study guide and exam practice test questions. Unlike any other LSSGB: Lean Six Sigma Green Belt video training course for your certification exam.

### Part 1 - Lean Six Sigma Green Belt Introduction Video

##### 6. Measures of Central Tendency & Dispersion

If data is given to me, what do I do? First, I need to perform simple measures. What are those? Let's look into first measures of central tendency. We talked about population and sample. The notations used and the formula used to calculate each one of these would differ a little. So please pay attention. There are three measures of central tendency. One is mean, one is median, and the third one is mood. For a population, you represent it using new The population mean is represented by new. It's the sum of all the numbers divided by the number of numbers you have in the data set. All right. You see Greek letters primarily for population. If it's a sample, you represent me or the average as an x bar, which is also the sum of all the variables divided by the number of variables. It's denoted by a small m because it's not the complete population, it's just a sample of the population. The mean is affected by the outliers, basically. Hence, you can probably look into median. Median is the middle value of the data. Let me explain this. Let us first look at the mean or average. If I have numbers 1234 and 5, If I take a simple average of this, how would I calculate one plus two plus three plus four plus five, which would be 15? I would divide that by the number of digits that I have. Sorry, for the count of this, I have five numbers here, so I divided by five, which is three. The mean is three. In this case, take another data set. Say I have the numbers 1234 and then 50. What would the count be? What would the summation of these numbers be? That will be 60, and since there are 51234five numbers, I divided by five, and the mean is twelve, and the mean here is three. The difference is only one number, 50, which raises your average significantly, right? This is called an outlier. Basically, a number that is extremely low in comparison to the rest of the numbers or a number that is extremely high in comparison to the rest of the numbers If you have such outliers, modelling would not be a feasible option. What do you do? You investigate the median or more. What is "median"?It is the middle value of the data. Say I have the numbers 123-4. The median in this data set would be three because that is the middle number. Or you can simply calculate using a formula. Also, if I have n numbers, I have five in this case. So I do five plus one divided by two, which is six by two, which is three. The third number is the median, and this is the third number. n plus one divided by two is the formula. Basically, n is the number of numbers that I have in the data set. In this case, medium is fine, right? Extremely easy. What if I have an even data set? Yeah. Now what do you do? It's simple. Take the average of the middle numbers because there is no middle number here. So I take the average of these two, that is, three plus four divided by two, which is nothing but seven by two, which is 3.5. So the median in this case would be 3.5. Let me ask you, what is the median of this data set be?Would it be nine? Will you be right and correct in saying so? Answer: no. You will have to arrange these numbers in ascending or descending order. Let me arrange 12367, nine and ten. Now it's arranged in ascending order. The moment you arrange these numbers in ascending order, the middle number will become the median. This is how you calculate median. Right? Mode: Mode is the most frequently occurring value in the data set. If I have 11234 five, which is a number that appears the maximum number of times in this data set, it is one. It's appearing twice, and "nonumber" is appearing twice here. Hence, that is called the mode. If I have only one mode, it is called unimodal. I can have a bimodal data set as well as a unimodal data set, I can have bimodal as well.112-2345 One is repeated twice; two are also repeated twice. No other number is repeated more than once. Hence, I have two modes, one and two. This is called a buy model. This is called a "bi-model" model," however you want to call it. I can also have a multimodal data set if there are a number of numbers that are repeating a number of times. All right, that is all about mode. Let us look at one more example. Three, four, five. In this scenario, the number that is repeated the maximum number of times is one. It's a repeated price. So hence I have one mode, which is called "one" in this case. So it is called "unimortal." All right, let us look into the various measures of dispersion. Now we have three measures of dispersion variance: standard deviation and range. Sigma square and the formula summation of x, which is each number minus the mean squared, and dividing it by the number of data points, are used to calculate variance. If it is a sample, the formula would change and the notations would change. It is a square. It is nothing but the summation of x minus x minus the square. You see small X's here because it's a sample. And here you see n minus one instead of n. This is a slight difference that you have to notice. If I take a square root ofvariance I would get standard deviation. Nothing else changes, but outliers have an impact on variance and standard deviations, just as they have on the minimum standard deviation. And in such cases, you go with the range. Range is nothing but the sum of the maximum and minimum values. If I have 1234 and five, the range would be five minus one, which is four. All right. Okay, here is a quick exercise for you to actually identify the mean, median, mode variance, and standard deviation range for these numbers. Yeah, you can either make use of Excel or the Minitab, or you can do a manual cancellation. It's left up to you. All right? Try it for your own understanding.